LECTURE: 5-5 THE SUBSTITUTION RULE (PART 2)

Example 1: Evaluate the following indefinite integrals.

(a)
$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta$$

(b)
$$\int \tan x dx$$

Example 2: Evaluate the following indefinite integrals.

(a)
$$\int (1+\tan x)^5 \sec^2 x dx$$

(b)
$$\int \frac{\cos(\pi/x)}{x^2} dx$$

Example 3: Evaluate
$$\int \frac{5+x}{1+x^2} dx$$
.

Sometimes when you do substitution you also end up solving for your variable in the substitution. For example: **Example 4:** Evaluate $\int x^5 \sqrt{x^3 + 1} dx$.

Example 5: Evaluate $\int x\sqrt{x+2}dx$

Definite Integrals

The Substitution Rule for Definite Integrals: If g' is continuous on [a,b] and f is continuous on the range of u=g(x), then

$$\int_a^b f(g(x))g'(x) = \int_{g(a)}^{g(b)} f(u)du$$

Example 6: Evaluate $\int_0^{\pi/2} \sin^3 x \cos x dx$ two ways:

a) going back to x's

b) using substitution

Example 7: Evaluate the following definite integrals.

a)
$$\int_{e}^{e^3} \frac{1}{x(\ln x)^2} dx$$

b)
$$\int_{1}^{2} x \sqrt{x-1} dx$$

Example 8: Evaluate the following define integrals.

$$a) \int_0^1 2^z \sin(2^z) dz$$

$$b) \int_0^2 \frac{x}{x^2 + 4} dx$$

Symmetry

- ullet A function f is even if ______. Even functions are symmetric about the
- ullet A function f is odd if _______. Odd functions are symmetric about the

Integrals of Even/Odd Functions: Suppose a function f(x) is (blank) on [-a, a]. Then,

(a) (even)
$$\int_{-a}^{a} f(x)dx$$

(b) (odd)
$$\int_{-a}^{a} f(x) dx$$

Example 9: Evaluate the following definite integrals.

(a)
$$\int_{-2}^{2} (x^2 + 1) dx$$

(b)
$$\int_{-1}^{1} \frac{\tan x}{1 + x^2} dx$$

Example 10: If f is continuous and $\int_0^9 f(x)dx = 4$, find $\int_0^3 x f(x^2)dx$.